
Virtualization: Enabler or Problem ?

Dimitri Papadimitriou
ECODE FP7 Project

FIREWeek, Lulea (Sweden)
July 2, 2009

July 2, 2009 2

Abstract
• The abstraction paradigm finds its origin in object-oriented-

programming and lead to the virtualization paradigm when applied to
networking (virtual nodes/networks, links/paths, etc.) e.g. to
"overlay" functionalities on top of the network layer. Similarly to
object-oriented-programming, the objective is to abstract control
actions and data structures to offer desired processing and messaging
capability without incurring complexity to external entities.
Nevertheless, in distributed environments, factoring out details of
individual components requires network-wide level of indirection to
abstract reachability/accessibility to these components. For this
purpose, an identifier-to-locator mapping-system is required to allow
communication between virtual entities and clients-to-virtual serving
entities. Additionally, no Internet challenge is identified for which
virtualization would constitute a suitable solution: in experimental
facilities, it enables resource composition/aggregation as well as
re-usability/re-location of dedicated resource shares but has very
limited applicability in the Internet. Past experience in overlaying
capabilities for e.g. multicast were unsuccessful because of dynamic
state processing and host-triggered messaging.

• This talk details the architectural consequences resulting from
maintaining and processing resource state information inside the
network, and enabling communication with/between virtual entities. It
reviews role of experimentation in quality/utility (functional) and
rate x state (performance) benchmarking to assess prototypes before
positioning virtualization as THE functional enabler of excellence.

July 2, 2009 3

Objective
• Architectural consequences resulting from

– Maintaining and processing resource state
information

– Enabling communication with/between virtual entities

• Role of experimentation for functional
(quality/utility) and performance (rate x
state) benchmarking

• What is our level of in-depth understanding
on virtualization ?

July 2, 2009 4

Outline
• Principle and application

• Characterization

• Relationship wrt Overlay and Programmability

• Indirection and Mapping Entries

• Distributed Mapping System

• Communication Principles

• Experimental Challenges

July 2, 2009 5

Abstraction
• Principle

– Origin from object-oriented programming ("hide
complexity")

– Abstracting actions (associated to control/
processing) and data structures (associated to
message exchanges) to offer desired processing and
messaging capability without incurring complexity to
entities external to the "system"

– Factoring out details of the constituting entities
of the system itself

July 2, 2009 6

Virtualization
• Resources

– System: CPU, memory, storage capacity
– Network: forwarding (node), transmission (link)

• Role in experimental facilities:
– Resource sharing: multiple virtual resource instances from single physical/logical resource (-> re-location/re-usability of shares)
– Resource aggregation: grouping of resource components into single virtual resource
-> Resource either re-used for multiple instances or multiple resource components aggregated into single virtual resource
– Resource emulation: virtual resource type Y from physical/logical (composition) of resource type X1,...,Xn

July 2, 2009 7

Virtual Networks
• Virtual (Connectivity) Networks

– Logical partition of network resources: forwarding (node), transmission (link)
– Each resource can be sliced so that it can be part of multiple Virtual Networks
– Each actions in one network do not affect the operation of any other network

a
e

c
i

hb

f

d

g

July 2, 2009 8

Virtual Networks: Hose vs Pipe
• Hose model

– Paradigm: set up paths between every pair of VN endpoints such
that i) aggregate bandwidth reserved on the links traversed by
the paths is minimum ii) share as many links as possible

– Properties: Ease of Specification and Characterization,
Flexibility, Multiplexing Gain

site2

site1

site3

A

B C
2 2

1

site2

site1

site3

A

B C
2 2

1

1

1 1

1

2 2

Independent Shortest Paths
Total = 8 units

site2

site1

site3

A

B C
2 2

1

1

1

2

Link sharing
Total = 6 units

2

July 2, 2009 9

Characterization
• Abstraction:

Similarly to object-oriented-programming, abstract control actions and data structures to offer desired processing and messaging capability without incurring complexity to external entities (= terminals/hosts)
Implication: in distributed environments, factoring out details of individual components requires network-wide level of indirection to abstract reachability/ accessibility to these components
-> indirect access to resource (components)

• Better resource utilization:
– Sharing (resource re-use/re-allocation)
– Aggregation (resource grouping)
– Emulation (resource re-composition)
-> Stateful (per virtual (sub-)entity)
>< Isolation (by loose, strict partitioning)

July 2, 2009 10

Second level of indirection
• Resource aggregation (pooling)

-> Maintain additional level of indirection

Source: Intel, Keynote for ISPASS 2008

July 2, 2009 11

Overlay wrt Virtualization
• Virtualization (<-> abstraction)

• Overlay (<-> layer)

ETH

IP

HDLC PPP ETH HDLC PPP

common denominator

weak coupling

Complex
system

abstract control actions
and data structures

ID space...
req/resp

July 2, 2009 12

Network routing vs Overlay routing
1. Tackle technological limits (scalability, resiliency, stability, etc. but also sub-optimal user performance) and operational limits (policing) of existing network

infrastructure routing

2. Or build (infrastructure-based) overlay on top of existing IP layer = additional level of indirection with benefits (such as customization and independence) but also side effects
1. Change properties in one or more areas of underlying network (e.g. edges)
2. Horizontal and vertical cross-layer conflicting interactions impacting

overall network performance (amplified by selfish routing)
3. Scalability, stability/convergence, security, etc.

a

d

c
b

1. Revisit network “routing functions”

Edge

In

Out

C

D

B

a

d

c b

2. Infrastructure-based overlay

AIn
Out

July 2, 2009 13

Some Observations on Overlay Routing
• Performing dynamic routing at both overlay

and native IP layer leads to conflicting
cross-layer interactions because of
– Functional overlap (unintended interactions/interferences)
– Vertical: mismatch/conflict in (re-)routing objectives
– Horizontal: contention for limited physical resources

(race conditions & load oscillations)

• Complex cross-layer interactions amplified by
– Selfish routing where individual user/overlay controls

routing of infinitesimal amount of traffic to optimize its
own performance without considering system-wide criteria

– Lack of information about other layer(s) ⇒ uninformed
optimizations leading to loose-loose situations

⇒ Need to overcome degradation of overall network
performance

July 2, 2009 14

General Problem of Indirection
“Any problem in computer science can be solved with another
layer of indirection.” — David Wheeler
“But that usually will create another problem.”
— rest of the quote

Multiple control mechanisms

VM Traffic

Proc.

VM control
info VM control

Decapsulation Encapsulation

VM fwd
info

Open i/f Open i/f

TC Lookup
FIB

RIB

Packet in Packet out

Routing
engine

Longest matching prefixClassifier

July 2, 2009 15

Programmability wrt Virtualization
• Virtualization

– Multiple logical routers on a single hardware
(platform)

– Resource isolation in CPU, FIBs, and link capacity
(bandwidth)

• Programmability (part of)
– General-purpose CPUs for control and processing
– NPAs (and FPGAs) for fast forwarding
– Extensible and open routing engine

July 2, 2009 16

Router and Virtual Router

Forwarding
Engine

FIB

RIB

ReadWrite

Packet in Packet out

Routing infoRouting info

VM
 1

VM
 m

..
.

substrate
forwarder

n

p

Functional view of "hard" router "Virtual" router

VM = virtual machines
Forwarding tables (usually)
distributed on line cards

July 2, 2009 17

Virtual Router
• Local inter-connection: binding process

VM IP address

Substrate IP address

binding
process

VM
 I
D
1

VM
 I
D
m

..
.

substrate
forwarder

n

p

"Virtual" router

VM = virtual machines

binding
process

VM ID

July 2, 2009 18

Programmability wrt Virtualization
• Specialized platforms (hard-routers)

– Root-cause: monolithic design of certain components (performance) and optimized low level code that does not allow for customization (option stripping at design phase)
– Distributed packet processing on LCs (distributed FIBswith "virtual output queues") interconnected by a cross-bar switched backplane
– Con's:

• admitted complexity
• little flexibility in terms of (re-)programmability (no APIs)
• no possibility of custom-addition of features (to prevent

performance degradations)

• Generic platforms (soft-routers)
– Objectives (programmability): performance at lower cost vsflexibility, and evolutivity at reasonable performance
– How to build platforms that can process packets at wirespeed (problem of "switching" in shared bus commodity hardware is still not resolved at least since so far)
– Trend: specialization of commodity platforms in similar direction than 3rd generation routers

July 2, 2009 19

Programmability wrt Virtualization
Open Questions

• Trade-off between Complexity (resulting from feature addition and dimensions), flexibility (does one size fits all), and performance (both in terms of energy but also CPU/memory consumption) ?
• Cyclic debate between "specializing" open commodity platforms and "generalizing" close dedicated platforms (first generation routers were also driven by computing system I/O design and soft-processing)

Note: if the evolution is
– Step 1) incorporate new features in software over commodity hardware (-> specialized platform)

and then
– Step 2) specialization to non-commodity hardware

Then "soft-platforms" of today will not be programmable tomorrow !

July 2, 2009 20

"Reservation – Monitoring" Chain

"Service""Service"

Location:
Topology
Discovery

Location:
Topology
Discovery

Provisioning
and scheduling
Provisioning

and scheduling

Identification
Resource
Discovery

Identification
Resource
Discovery

MonitoringMonitoring

Resource
control
Resource
control

Traffic
control
Traffic
control

Get {ID1,...,IDn}

Mapping system

tuples <IDi,LOCj>

ID space

LOC space

Get {ID1,...,IDn}

July 2, 2009 21

Mapping entries
• Mapping entries: {<ID1,LOC1>,...,<IDi,LOCj>,...,<IDm,LOCn>}

• Dynamics of mapping entries driven by resource sharing
(sharing) x resource aggregation (pooling)
– ADD

• ADD IDn at given LOC: {<ID1,LOC>,...,<IDi,LOC>,...,<IDm,LOC>}
• ADD LOCn for given ID: {<ID,LOC1>,...,<ID,LOCj>,...,<ID,LOCm>}>

– REMOVE
• Remove IDn at given LOC: {<ID1,LOC>,...,<IDi,LOC>,...,<IDn,LOC>}
• Remove LOCn for given ID: {<ID,LOC1>,...,<ID,LOCj>,...,<ID,LOCm>}>

– MOVE
• IDm -> IDn at given LOC

– T(i): {<ID1,LOC>,...,<IDi,LOC>,...,<IDm,LOC>}
– T(i+1): {<ID1,LOC>,...,<IDi,LOC>,...,<IDn,LOC>}

• LOCm -> LOCn for given ID
– T(i): {<ID,LOC1>,...,<ID,LOCj>,...,<ID,LOCm>}
– T(i+1): {<ID,LOC1>,...,<ID,LOCj>,...,<ID,LOCn>}

July 2, 2009 22

Second level of indirection
• Resource aggregation (pooling)

-> Maintain additional indirection

Source: Intel, Keynote for ISPASS 2008

<ID1,LOC1>

<ID3,LOC3>

<ID2,LOC2>

July 2, 2009 23

Mapping entries
• Set of tuples <IDi,LOCj>: |ID| = M, |LOC| = n, ~ O(n.M) number of states in system

• Effect of sharing:
|ID| = M => |shared ID| = Σj kj |Mj|
where kj is the share rate (per location j) for resource Mj

• Effect of pooling:
|ID| = M => |pooled ID| = Σl Σi C(m,i)
(l subsets of |ID|, each with m elements) assuming simple
combinations across all locations

⇒ Flexibility decreases scalability
|Shared ID x Pooled ID| ~ n.[k.M] + Σi C(m,i)

July 2, 2009 24

Indirection
• Identifier-to-locator mapping-system required

to allow provisioning & scheduling but also
monitoring of distributed (virtual) resource
components
– Remember binding between <VM ID, VM Locator>

• Host/terminal-to-virtual serving entities
communicate by means of "resource IDs"

July 2, 2009 25

Distributed Mapping System
• At min. each admin unit with its own <ID,LOC> database

• Requires communication (of <ID,LOC> tuples ≡ states)
– Between databases
– Between DB and "provisioning & scheduling (PS) points"
– Between PS and distributed "monitoring points"

DB

DB

DB DB

DB

DB

July 2, 2009 26

Distributed Mapping System
• At min. each admin unit with its own <ID,LOC> database

• Communication mode:
– Push (dissemination) usually between DB
– Pull (request/ response) to DB
– Hybrid push-pull

DB

DB

DB DB

DB

July 2, 2009 27

Distributed Mapping System
• At min. each admin unit with its own <ID,LOC> database

• Mapping system dynamics driven by tradeoff between
(update) rate x (number of) state x latency (push vs
pull)

DB

DB

DB DB

DB

July 2, 2009 28

Communication Principles
• Internet model

– End-to-end loose coupling (vertical): user-stateless
network

– Internetwork layer for inter-connection of autonomous
networks with loose coupling (horizontal): network
state independence

-> Host1 knows source IP (via DHCP), and IP dest (IP2)
about the network itself (and will receive feedback from
TCP)

IPIP IP

router

IP2IP1
TCPTCP

Host 1 Host 2Net 1 Net 2edge
router

edge
router

July 2, 2009 29

Communication Principles
Principles
Separate address topology independent resource identifier (=
ID space) and topology dependent locator (= address space)
Resolution (for location) via distributed database incl.
information necessary to translate topology independent
identifiers to topology dependent addresses (locators)

APP
TCP
IP IP IPIP IP IP IP

APP
TCP

Edge
router

Edge
router

ID-to-LOC lookup

Mapping system dynamics (update rate) x
scaling (state) x latency (push vs pull)

Resource space (identifiers, ID):
topology independent

Network space (Locators, LOCs): topology dependent

July 2, 2009 30

Performance Dependencies
• Responsiveness: how system "responds" to

– Demand/arrival rate (and variation) wrt load
– Intentional changes
<-> Mapping system dynamics driven be trade-offs between

rate x state x latency

• Churn: effect of intentional system changes for "in-
use" mappings
– How mapping system adapts to unintentional changes in

reachability (if at all)
– Dependence on something not on the data path (->

uncontrolled weaknesses)

• Resilience of mapping system itself

• "Complexity/robustness/fragility" spiral [DOYLE02]

July 2, 2009 31

Which entities external (customer edge or host/terminal) ?
• Network locators terminate at customer premises
• TCP connection at host/terminal

Which service points (Network edge or Customer edge) ?
• Performance metrics and criteria ?
• Boils down to ask: where is location of the Application-

to-Network boundary (today in the terminal) ?

-> Moving this boundary poses technological challenges (as
already explained) but also questions evolvability and
security challenges

Which Edge ?

July 2, 2009 32

Role of Virtualization
wrt Internet Challenges

ArchitectureFunctions

Performance

ArchitectureFunctions

Performance

+ Security
+ Accountability
+ Availability
+ Manageability
+ Mobility

+ users, + devices,
+ locations, + router/s
→ routing scalabilityNetwork

System

???

Virtual routers

• Internet challenges ≡ networking challenges

July 2, 2009 33

So...
• What does virtualization (is intended to) solve in

practice in terms of networking/Internet challenges ?

• Question: is "flexibility" (better resource
utilization) leading to possible answer for (some of)
Internet network challenges ?

... or is the concept an "enabler" to address specific
needs identified in the context of the Internet ?

In that case, the "design" becomes even more complex
(objective functions) -> will require to address
genericity and evolvability

July 2, 2009 34

Research Challenges
• Elaborate "problem statement" vs "needs"

– Why are the intended "functionality" not resolvable with
current Internet/where are the limitations ?

• Identify architectural and design goals (both at system
AND network level)
– Note: if the approach is inductive documenting set of

representative use cases can be considered

• Identify architectural impact resulting from
"virtualization" (at both system and network level)
– Note: Detailed network modeling is still missing

July 2, 2009 35

Performance Challenges
Virtual "system" (e.g. virtual router)
• Optimization of the "routing systems" being executed

through VMs while maintaining overall system
performance

• Model (resource) requests in relation to VM
configuration (parametric)

• Identify system behavior to predict load variation (->
dynamically adapt VM’s capacity e.g. CPU, memory)

• Dynamic on-line provisioning, control, and performance
monitoring of VMs in a distributed environment

• Mathematical performance modeling & analysis as well as
numerical simulations complementary to experimentation
(by means of emulation and prototypes)

July 2, 2009 36

Trade-offs
• Trade-off between efficiency, complexity and

dynamics plays fundamental role in design
– Statistics collection algorithms (monitoring)
– Dynamics may affect confidence in statistical

information
– Confidence in statistical information affects

efficiency: less accurate statistical information
leads to e.g. oscillations effects (action/reaction
chains)

• How to design "adequate" performance
monitoring tools ?

